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Supplementary Information 

Supplementary Information relating to Figure 2. 

Equations (1) and (2) are integrated numerically, starting from a motionless bridge at 

equilibrium and 50=N  pedestrians with random phases iΘ , then incrementing N  by 

10  at each step.   Parameters: kg1013.1 5×=M , kg/s1010.1 4×=B , 
26 kg/s1073.4 ×=K , 2m/skg30=G , 11sm16 −−=C , 2πα = , rad/s47.60 =Ω  

corresponding to Hz03.1 , and 0075.0=ς .  Normally distributed iΩ , with mean 0Ω  

and standard deviation rad/s63.0 , corresponding to Hz .10 .    

Supplementary Methods 

We begin by describing the methods used to derive the formula for the critical crowd 

size: 
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The calculation involves three main steps.  First, we non-dimensionalize the 

governing differential equations in a way that brings out the appropriate length and time 

scales.  This scaling also reveals a small parameter in the system, which allows us to 

make progress by using standard asymptotic methods.   

In the second step, these asymptotic methods are applied to the scaled equations to 

obtain the so-called “averaged equations” that govern the evolution of slowly-varying 

amplitudes and phases in the problem.   

The third step is to calculate all the steady-state solutions of the averaged 

equations.  There are two such solutions: one corresponds to a motionless bridge with 

desynchronized walkers on it, and the other corresponds to a vibrating bridge with many 

(but not all) of the pedestrians phase-locked to the bridge’s motion.  By studying where 
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the wobbling state bifurcates from the motionless one, we obtain the desired formula.  

The approach used in the third step is a direct extension of a method first developed1,2 

for the analysis of large systems of coupled biological oscillators.   

Before proceeding, we wish to clarify that two teams working independently 

(S.H.S./D.M.A./A.McR. and B.E./E.O.) developed equivalent versions of the model in 

this paper.  The formulation discussed here is that of S.H.S./D.M.A./A.McR. 

 

Scaling.  The governing equations, as presented in the main text, are  
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To scale the system, we introduce the following parameters  
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Then the model equations can be rewritten in dimensionless form as  
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where the angular brackets denote an average over all the pedestrians:  
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The advantage of the scaling used here is that a parameter ε  appears in front of both the 

coupling terms on the right hand side of equations (3), (4).  Hence, in the limit 0→ε  

the system decouples completely and thereby reduces to a much more tractable form.    

To render the system suitable for averaging theory, we simplify it further by 

supposing that  

bες =                                                           (6) 
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These assumptions are valid if the damping is weak and the pedestrians have nearly 

identical walking frequencies that also happen to be close to the bridge’s resonant 

frequency.  (All of these conditions hold for the Millennium Bridge.)   The detunings 

iω  are distributed with a probability density )(ωp , obtained from the original 

distribution of walking frequencies via the transformations dΩΩPdp )()( =ωω  and 

)1(0 ωε+= ΩΩ , the latter coming from equation (7).   

Next, define new phase variables, iθ  and ψ , by viewing the dynamics in a frame 

rotating at the resonant frequency: 
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τθ −= ii Θ                                                          (8) 

τψ −=Ψ .                                                         (9) 

Then the model’s governing equations (3), (4) become  
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Averaging theory.    If 0=ε , the solution of equation (10) would be 

)sin()( ψττ += ax , where a  and ψ  are constants.  Likewise, the solution of equation 

(11) would be const)( =τθ i .  For the case of interest, where 10 <<< ε , the amplitude 

and phase variables are not quite constant—they have time derivatives of order ε .  But 

they are almost constant in the sense that they vary slowly, on a time scale )./1( ετ O=   

The method of averaging3 is a standard procedure for deriving the equations governing 

these slow variations.  Following the usual approach, we find that  
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where the overdot denotes differentiation with respect to slow time ετ=T .  (All of this 

presupposes that ε  truly is small for the parameter values appropriate to the Millennium 

Bridge; we’ll see below that this is the case.) 

Speaking in more physical terms, the averaged equations describe the gradual 

evolution of the bridge vibrations and the crowd synchronization process.  Both of these 
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are intuitively expected to be slow, in the sense that they would seem to require tens or 

possibly hundreds of footsteps by the walkers before they could grow significantly.  Our 

analysis will show that these processes are indeed slower than a single footstep, but not 

very much slower; the fast and slow time scales are separated by only about one order 

of magnitude.    

Stationary solutions.  The averaged equations (12)–(14) can be viewed as a nonlinear 

dynamical system with a state space of dimension 2+N , and parametrized by the 

random detunings iω .  Given all this complexity, there is no hope of solving these 

equations in general.  Nevertheless, a great deal can be learned by adopting a statistical 

approach in the spirit of kinetic theory, fluid mechanics, or traffic flow.  This is the 

method that has often been used in the study of coupled biological oscillators, and in 

fact, equations (12)–(14) are very similar to a classic model in that field, known as the 

Kuramoto model1,2. 

It turns out, remarkably, that in the special case where 2π=α  and )(ωp  is even 

and unimodal, the system has steady states precisely isomorphic to those in the 

Kuramoto model.  In other words, our problem can be mapped onto that one, at least as 

far as steady states are concerned (the transient behaviour is somewhat different, 

however).  For simplicity, we’ll restrict attention to this special case from now on, 

although we have found that the method can be readily extended to arbitrary α  and 

)(ωp .   

To uncover the connection to the Kuramoto model, let us look for statistically 

steady solutions of equations (12)–(14), for 1>>N .  These will have a time-

independent value of a  (to be determined self-consistently, as part of the solution).  

Ordinarily, the corresponding condition for ψ  would be that q=ψ� , where q  is some 

unknown constant that also has to be found self-consistently.  But here, because of the 

particularly felicitous special case we are considering, it turns out that one can insist on 
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a self-consistent solution with constant ψ ; that is, we can impose 0=ψ�  a priori.  Then, 

because the averaged equations possess a global rotational symmetry (they are left 

unchanged by 0ψψψ +→  , 0ψθθ +→ ii  for any constant 0ψ ), we can fix ψ  equal to 

any value we like, without loss of generality.  We choose  

2)( πψ −≡T                                                  (15) 

so that 0=+αψ  and hence equation (14) conveniently reduces to  

.,,1,sin Nia iii …� =−= θωθ                        (16) 

Also, by setting 0=a�  in equation (12) and recalling 2π=α , we find  
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Likewise, because ψ  is constant, equation (13) yields  

.0sin =iθ                                                      (18) 

Equations (16)–(18) are identical, up to change of notation, with equations found 

in the solution of the Kuramoto model1,2.  Borrowing results known for that model, one 

can prove that there are two stationary states for our system.   

One of them has 0=a  (the bridge is completely motionless) and the phases iθ  

are uniformly dispersed over the interval πθ 20 ≤≤  (the pedestrians are totally 

desynchronized from one another).  This state exists for all values of the damping 

parameter b , and no matter how broad or narrow the distribution )(ωp  is.  It is not 

necessarily stable, of course—in fact, it is stable only if the dimensionless damping is 

large enough, or the dimensionless detuning distribution is broad enough.   

The other stationary state has 0>a  (the bridge is wobbling).  Now the 

pedestrians split into two groups, corresponding to a state of partial synchronization 
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within the population.  Walkers with detunings ai ≤ω  (that is, with intrinsic walking 

frequencies sufficiently close to the resonant frequency of the bridge) are the “sensitive” 

people who lock in to the wobbles of the bridge, as can be seen from equation (16).   

They lock at final phases *
iθ  given by  

aii ωθ =*sin                                                    (19)  

and therefore drive the bridge with an oscillating force )sin( *
0 itΩG θ+ . 

To understand the physical significance of this result, recall that the bridge 

displacement is given by tΩAtΩAΨAX 00 cos)sin(sin −=+== ψ , where the last 

equality follows from equation (15); hence the bridge velocity is tΩAΩdtdX 00 sin/ = .  

Comparing this to the excitation force )sin( *
0 itΩG θ+  generated by a single phase-

locked pedestrian, we see that the excitation force leads or lags the bridge velocity by an 

amount given by equation (19).  For example, the perfectly resonant pedestrians (whose 

detunings are exactly zero) exert a force that is precisely in phase with the bridge 

velocity, and therefore pump energy into the wobbles with maximum efficiency.  The 

other phase-locked pedestrians lead or lag the bridge velocity by an amount that 

increases with their detuning but still results in a net transfer of energy into the 

vibrations of the bridge.   

Now we turn to the desynchronized pedestrians, whose detuning falls in the range 
ai >ω .  These people never fall into synchrony with the bridge’s vibrations.  Instead, 

they drift monotonically through all phases relative to the bridge, though they hesitate 

longest near a relative phase relationship of )sgn()2( iπ ω  (the phase where their speed 

iθ�  is minimized in equation (16)).  The incessant phase drift of these pedestrians 

would seem to violate the original assumption that the system as a whole is statistically 

steady, but the stationarity condition can be enforced nonetheless.  The key is to require 

that these pedestrians distribute their phases according to a stationary density ),( ωθρ .  
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The condition for stationarity (just as in traffic flow or fluid mechanics) is that the 
density at a given θ  must be inversely proportional to the speed θ�  there, as prescribed 

by equation (16).    Thus  
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a>ω .   

Having characterized the phase distributions of both the locked and 

desynchronized parts of the crowd, it remains only to make sure that equations (17) and 

(18) are satisfied.  Both of those equations involve averages over the entire population, 

and hence will involve two contributions—one from pedestrians who are locked to the 

bridge’s vibrations, and another from those who are desynchronized.   

It is easy to check that equation (18) is satisfied automatically if we assume (as we 

have been) that )()( ωω −= pp  for all ω ; this is where the symmetry assumption on the 

detunings, and hence on the original walking frequencies, comes into play.   

Thus equation (17) is thus the only remaining equation to be satisfied.  It 

determines the self-consistent amplitude a  of the bridge’s steady-state vibrations, a 

quantity that until now has been fixed but unknown.  Writing the average in equation 

(17) as a sum of contributions from the locked and desynchronized pedestrians, we 

obtain the self-consistency equation 
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where, in the first integral, ω  and θ  are invertibly related by θω sina= (because of 

equation (19)).  One can check that the term in brackets in the second integral 
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vanishes—this is equivalent to the physically plausible statement that the 

desynchronized pedestrians do no net work on the bridge.  Therefore, after substituting 

θω sina=  in the first integral, we find  
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where we notice that both sides contain a constant multiplicative factor of a .  Thus, as 

claimed, there are two types of steady solutions:  

• 0=a :  The bridge is motionless, in which case equation (20) yields 

)2(1),( π≡ωθρ , meaning that all the pedestrians are desynchronized and 

uniformly scattered in phase; 

• 0>a : The bridge is wobbling with dimensionless amplitude a  given 

implicitly by the solution of  
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This branch of solutions splits off the desynchronized branch at a critical value of b , 

which can be found by taking the limit +→ 0a  in equation (23) and evaluating the 

integral.  We find  

).0(
4

pπbc =                                                       (24) 

Under our assumption that )(ωp  is symmetrical and bell-shaped with a maximum at 

0=ω , one can check that the bifurcation is supercritical.  That is, solutions of equation 

(23) exist only for cbb ≤ , indicating that the motionless state loses stability once the 

dimensionless damping is too small, after which it gives rise to a stable wobbling state.    
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The bifurcation condition (24) can be transformed back into the original 

dimensional variables, using the relationships dΩΩPdp )()( =ωω  and )1(0 ωε+= ΩΩ , 

along with the definitions of ε  and b  in equations (1) and (6).  The result is the desired 

formula for the critical crowd size,  
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Interpretation and testable aspects of the model.  There are various assumptions and 

testable features of the model that warrant further comment.    

For example, the equation for the bridge dynamics (Eq.(1) in the main text) 

assumes that the pedestrians drive the bridge by imparting sideways forces on it.  This 

force is known4-7 to be quite small compared with the front-to-back force generated 

during walking, which in turn is quite small compared with the up-and-down force 

generated during walking. So one could reasonably ask whether these other loads 

helped to drive the bridge, perhaps through interesting modal interactions with the 

bridge.  This possibility was considered during the early investigation on the bridge, 

back in 2000. However, it was generally concluded that the modal interactions did not 

play a crucial role in the opening day events.   For example, on p.26 in Dallard et al.4 , 

the authors estimate the effect of vertical and torsional forces and show that “the lateral 

component of load was by far the most significant.”  Furthermore, experiments by 

McRobie et al.6 on a large rig suspended from vertical cables (which had only one 

degree of freedom – a purely lateral motion) were able to replicate the synchronization 

and instability phenomenon – thereby demonstrating that lateral forces, rather than 

vertical or longitudinal, were the important effect.  
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The hypothetical equation for the walker dynamics (Eq.(2) in the main text) is 

much more tentative.  It should be viewed as a simple, qualitative attempt to describe 

how people might alter their gait when they are walking on a platform swaying from 

side to side.  The form of the equation is motivated by an analogy with phase-locked 

loops, lasers, and other nonlinear systems that are able to synchronize to an external 

periodic drive.  Equations of this form have been shown to give a reasonable 

approximation to the dynamics of various biological rhythms, such as the flash rhythm 

of southeast Asian fireflies when driven by an oscillating light stimulus8.   The 

parameter C  in the equation quantifies the impact of a stimulus (here, the bridge 

vibration) of amplitude A  and phase Ψ .  Specifically, C  controls how fast a pedestrian 

unconsciously shifts the phase of his walking cycle in response to the sideways 

oscillations of the platform on which he is walking.   

Notice that Eq. (2) also assumes that the rate of phase shifting is directly 

proportional to the drive strength A .  This seems plausible—as the bridge vibrations 

tend to zero, their effect on the walker should vanish as well.  A linear dependence on 

A  is both the simplest and most generic way to incorporate this effect.   

By the same token, the parameters C  and α  should depend on the drive 

frequency 0Ω .  Since the phase-shifting influence of a moving platform should vanish 

in the limit of imperceptibly slow oscillations, we expect that 0→C  as 00 →Ω .  On 

purely mathematical grounds, one would expect that 0~ ΩC for small 0Ω , since this is 

the generic case if the dependence is smooth.  On physical grounds, however, one might 

expect a quadratic dependence 2
0 )(~ ΩC .  This would be the case if the phase shift 

were controlled by the inertial force experienced by the walker as he is being shaken 

from side to side.   

Finally, on biological grounds, one would expect the sensitivity C  to vary across 

the population, depending on a person’s age, size, health, and so on.  At the moment we 
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have no way to estimate any of these inter-individual differences and therefore have to 

resort to estimating a population average for C .  

Although Eq.(2) has a black-box character and cannot account for neural 

properties of the human locomotor system in any detail, it does have the virtue that it is 

straightforwardly testable.  One could conduct biomechanical experiments on individual 

subjects, similar to those reported in ref. [6], or like those conducted at Imperial College 

and cited in Dallard et al.5 (but whose results have not yet been fully published, to the 

best of our knowledge).  The idea is to put subjects, one at a time, on platforms 

vibrating with a fixed, controlled amplitude A  and prescribed driving frequency (so 

tΩΨ 0=  in Eq. (2) of the main text).  One then records the footfalls and phases of the 

subjects during the transient period as they adjust their gaits to the vibrations of the 

platform.   From that data one could extract a fitted C  and α  for each person, at a 

given amplitude A  and driving frequency 0Ω .  We believe that the prefactor of A  in 

Eq.(2) should account for the main dependence on amplitude; this could be tested 

directly by checking whether C  and α  are roughly constant as the amplitude of 

excitation varies. (The algebraic dependence of C  and α  on 0Ω  could also be extracted 

in a similar way.)  The subject’s natural footfall frequency iΩ  could be measured 

directly by observing his normal gait on a motionless walkway.  If the sinusoidal form 

of Eq.(2) turns out to be too crude, one could concoct more elaborate functional forms 

of the coupling term to see which best fits the recorded data. 

 

Testable consequences.  In the remainder of this Supplementary Information, we 

summarize the calculations used to derive various testable consequences of the model, 

three of which were mentioned in the main text (characteristic amplitude of the bridge’s 

vibrations; synchronization time scale; and the empirical law that the correlated 
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excitation force produced by the pedestrians is proportional to the magnitude of the 

bridge’s velocity).   

All the parameters in the model are known, in some cases only roughly, except for 

the biomechanical parameters C  and α .  They could be determined by measuring the 

changes in gait of individual subjects as they adjust to walking on vibrating platforms 

driven at a specified amplitude and frequency.  Lacking such data (for now, at least), we 

have chosen to fix 2π=α  for simplicity, and to estimate C  from an experiment 

conducted on the Millennium Bridge.  Our estimates could well need modification when 

the relevant data become available, but in the meantime, they seem to account 

reasonably well for diverse observations on opening day and in subsequent controlled 

experiments.  

Fitting the formula (25) to the observed value of cN , assuming that all other 

parameters have the values measured for the north span of the Millennium Bridge 

(before it was retrofitted with dampers) yields, as a first estimate, that .sm15 11 −−≈C   

This estimate needs to be refined slightly, however, to account for an aspect of the 

procedure used in the experiments.  Recall that the number of the people on the bridge 

was progressively incremented in a staircase fashion, as shown in Fig. 2a in the main 

text.  This approach tends to overestimate cN  because it increases N  faster than the 

system’s transient dynamics can keep up with.  The difficulty becomes especially acute 

where it matters the most—at the critical crowd size, where the eigenvalue governing 

transient growth approaches zero and the synchronization time scale tends to infinity 

(see below).  In our simulations, we find that a value of C  closer to 16 or 17 gives 

results that more faithfully reproduce the experimental data on the transient growth of 

the vibrations.  Therefore, in what follows, we will assume .sm16 11 −−≈C  
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Characteristic amplitude of vibrations.  With all the parameters now fixed, the model 

makes a number of firm predictions.  The characteristic length scale is given by  

mm200 ≈=
KC

NGΩL ,                                    (26) 

where we are assuming 160=N , 2m/skg30=G , rad/s)03.1(20 π=Ω , 2
0MΩK =  with 

kg000,113=M , and 11sm16 −−=C , all of which are appropriate for the experiment 

conducted on the north span. 

The length scale L  sets the typical size of the bridge’s vibrations, and compares 

well with the data shown in Fig.4 of Dallard et al.4, where the maximum acceleration 

seen was 80 milli-g, equivalent to an amplitude of 20 mm.  Note that this experiment 

was stopped (for safety concerns) before the acceleration had reached a steady state; 

otherwise even larger vibrations and accelerations would have occurred.  Also, for 

comparison, the maximum displacements observed on opening day were about 70 mm 

on the center span, and 50 mm on the south span, though with considerably larger 

numbers of pedestrians.   

 

Synchronization time scale.  The model predicts that the system has three important 

time scales.   

The fast time scale is set by the frequency of a pedestrian’s walking cycle and by 

the resonant frequency of the bridge.  Since the dimensionless fast time variable is 
tΩ0=τ , the fast time scale can be taken as 02 Ωπt fast = .  Thus the fast time scale is on 

the order of one second. 

The slow time scale controls how long it takes for the crowd and the bridge to 

interact substantially.  Since the slow time variable is tΩT 0εετ == , the slow time scale 

is 02 Ωεπtslow = and hence  
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ε1/ =fastslow tt .   

Substituting the parameter values from above, we find  

05.00 ≈= KΩNGCε ,                                       (27) 

which is indeed small compared to unity, as the theory supposed from the start.  Thus, 

we see that the slow time scale is about 20 times longer than the fast one, and hence is 

on the order of tens of seconds.  This time scale is comparable to that observed for the 

growth of bridge oscillations in the crowd tests reported by Dallard et al. (for example, 

see Figures 15 and 17 in ref. [5].) 

The third time scale, which we call the onset time scale, is super-slow.  A limiting 

case of the slow time scale, it operates only very close to the bifurcation point where the 

bridge switches from stable to unstable.  As can be shown by asymptotic analysis of 

equation (43) below, at the onset of instability the crowd synchronization and bridge 

vibrations grow exponentially, but with a divergent time constant given asymptotically 

by 
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as cNN →  from above.  Here ωσ  is the (dimensionless) standard deviation of the 

detunings; for pedestrians with Gaussian intrinsic frequencies of mean 1.0 Hz and 
standard deviation 1.0=fσ  Hz, we find that 2)2( 0 ≈= fΩπ σεσω .  In particular, 

when 16=C , we find that 148=cN ; hence, for 0075.0=ς  and )03.1)(2(0 πΩ =  we 

obtain   
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c
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≈ .                                             (29) 
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Thus, for 164=N , say, we expect that the synchronization order parameter )(tR  

will require a super-slow time scale on the order of sec200)148164/(3200 =−  to grow 

by a factor of e .  Note that this time is longer than the length of one of the staircase 

plateaus in Fig. 2a.  In other words, near the critical crowd size, people were being 

added to the bridge faster than the system could respond.  This explains why the 

staircase procedure tends to overestimate cN .   

In reality, the super-slow time scale may not be quite as long as our estimate 

suggests.  In Fig.4 of Dallard et al.4, it took about 60 seconds for the vibration amplitude 

to reach a level of 20 mm after the critical crowd size had been exceeded, whereas our 

simulation (Fig.2 of the main text) predicts a time scale 2-3 times longer than that.  

Perhaps it would be too optimistic to hope for better agreement, given the many 

simplifications and uncertainties in the model.  For example, we have assumed that 

pedestrians exert a maximum lateral force G on the bridge, independent of how much 

the bridge is wobbling.  In fact, G  is known to increase with the vibration amplitude A , 

as people widen their stance and change their gait to keep their balance5,6.  

Incorporating this effect would speed up the super-slow time scale, as desired, by 

strengthening the positive feedback loop between synchrony and wobbling, thereby 

making the dynamics even more unstable.   Another source for the discrepancy could be 

uncertainties in the model parameters, especially C  and α .  Finally, our simulations 

show that the critical crowd size and super-slow time scale vary sensitively from one 

run to the next, depending on the order in which pedestrians are added to the bridge 

(bear in mind that different pedestrians have different intrinsic frequencies iΩ , sampled 

at random from the underlying distribution).    

 

Empirical law F = kV.  Dallard et al. 4,5 conducted a series of controlled crowd tests on 

the Millennium Bridge.  A key result of these investigations was the discovery that the 
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crowd exerts a “correlated excitation force” on the bridge that increases in proportion to 

the bridge’s velocity.  Thus, the more the bridge moves, the more the crowd pushes it to 

move further.  We find that an effect of this sort occurs in our model as well, as a 

consequence of the crowd’s increasing synchronization.   

First we need to find our model’s versions of the relevant quantities.  The bridge 

velocity is given by 

)cos(/ 00 ψ+= tΩAΩdtdX ,                                        (30) 

to leading order in ε ; that is, we are neglecting the slow variations in amplitude and 

phase that contribute an )(εO  correction to this dominant term.  Hence the magnitude 

of the velocity (itself a slowly-varying function of time) is given by  

)()()( 00 TLaΩTAΩTV == ,                                  (31) 

where )(Ta  is the dimensionless amplitude variable that appears in the averaged 

equations (12)–(14).   

The correlated excitation force F  (per person) is found in three steps: first we 
write the excitation force per person, given by iG Θsin ; then we take the component 

of this force that is in phase with the bridge’s velocity; and finally we take the 

magnitude of that in-phase (or “correlated”) component.   To extract the component in 

phase with the velocity in equation (30), we write 
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which shows that the second term in the last line is the in-phase component.  Its 

magnitude is therefore  
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)sin( ψθ −= iGF .                                                  (32) 

This can be conveniently expressed in terms of the complex order parameter1,2 

)exp( j
i ieR θφ =                                                  (33) 

as  

)sin(
)sin(

ψφ
ψθ
−=

−=

GR
GF i                                                 (34) 

where φψ ,,, RF  and jθ  are all functions of slow-time T .   

Equation (34) highlights the crucial role that synchronization plays in generating 

the correlated force: it shows that F  is proportional to R , the amount of phase 

coherence among the pedestrians. Thus, the more synchronized the crowd becomes, the 

more force they collectively impart to the bridge.   

The empirical law found by Dallard et al.5 states that kVF ≈ , meaning that the 

ratio VF /  is approximately constant during the transient when the wobbles are building 

up and the crowd is becoming synchronized.  From equations (31) and (34), we see that 

the model’s counterpart of this ratio is  

( ))()(sin
)(
)(

0

TT
Ta
TR

LΩ
G

V
F ψφ −








= ,                               (35) 

which is not constant with respect to T , but which is almost constant, as we’ll show  

next.  To do so, we need to look more closely into the dynamics implied by the 

averaged equations.   

An important feature of dynamics is that the averaged equations (12)–(14) possess 

an antisymmetric invariant manifold3 in the continuum limit ∞→N .  This follows 

from our earlier assumptions that 2πα =  and that )(ωp  is even.  Here’s an intuitive 
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explanation: suppose the detunings come in antisymmetric pairs, ii −−= ωω , consistent 

with the evenness of )(ωp , and suppose we start the system with 2)0( π−=ψ , 

0)0( =φ  and with all the corresponding phases also arranged antisymmetrically: 

)0()0( ii −−= θθ .  Then equations (12)–(14) imply that these conditions will continue to 

hold for all time.  In other words, a solution to the system that starts on this manifold 

will stay on it forever.  Therefore, for initial conditions restricted to this manifold, we 

can set 2)( πT −≡ψ  and 0)( ≡Tφ  for all .T   Hence the dynamics on the invariant 

manifold reduce to  

 

baRa −= 2
1�                                                   (36) 

,,,1,sin Nia iii …� =−= θωθ                    (37) 

where  

iR θcos= ,                                                 (38) 

and equation (35) simplifies to  

)(
)(

0 Ta
TR

LΩ
G

V
F









= .                                               (39) 

The constancy of the ratio VF /  thus boils down to the constancy of the ratio 

)(/)( TaTR , or in physical terms, the ratio between the amount of phase 

synchronization and the amplitude of wobbling, at any given time.  Figures 2b and 2c in 

the main text already illustrated that these two functions follow nearly parallel time 

courses, as if one were just a constant multiple of the other.  Thus, on numerical 

grounds, we have seen evidence for the approximate constancy of the ratio in equation 

(39), and hence for the empirical law in question.  What remains is to understand why 

this near-constancy is logically implied by the governing equations.    



20 

The remainder of the calculation will only be sketched, because the details are too 

lengthy to include here.  Our numerics suggest that that the invariant manifold is locally 

attracting and hence provides a representative picture of the dynamics for a wide range 

of initial conditions.  Next we take the continuum limit of the model, for which exact 

results can be obtained.  As in the analysis of the Kuramoto model1,2, the continuum 

limit is phrased in terms of a density ),,( Tωθρ , which describes how many people are 

at a particular phase θ  in their walking cycle at time T , given that they have an 

intrinsic detuning ω .  The evolution equation for this density, analogous to a continuity 

equation in fluid mechanics, is  

)( v
T

ρ
θ

ρ
∂
∂

−=
∂
∂                                               (40) 

where the velocity field in phase space is given by the Eulerian version of equation (37): 

θωωθ sin),,( aTv −= ,                                      (41) 

and the order parameter in equation (38) becomes  

θωωωθρθ ddpTR
π

)(),,(cos
2

0
∫ ∫

∞

∞−

= ,                              (42) 

by the law of large numbers.  Thus the flow on the invariant manifold is now given by 

the equations (36) and (40)–(42).    

The fixed points of the continuum system are precisely the stationary densities 

discussed earlier, with the advantage that we are now in a position to analyze their linear 

stability.   

In particular, consider the linearization about the state with the crowd completely 

desynchronized ( π21=ρ , 0=R ) and the bridge motionless ( 0=a ).  We find that this 

state loses stability when a single eigenvalue λ  passes through zero onto the positive 

real axis.  Then TeRTR λ
0)( =  and  TeaTa λ

0)( = , where λ  satisfies  
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ωω
ωλ

λλ dpb )(224
1 ∫

∞

∞− +
=+  .                                      (43) 

The analysis shows further that along the unstable eigenvector, R  and a  are related by  

)()(2)( TabTR λ+= .                                           (44) 

Therefore, for parameters just slightly above the instability, where λ  is near 0, equation 

(44) implies that  

)(2)( TabTR ≈                                                (45) 

throughout the initial exponential growth away from the desynchronized state.    

But that last result is remarkable, because the same proportionality holds at long 

time as well: equation (36) shows that as ∞→T , the system settles to a fixed point 

(representing a steadily wobbling bridge and partially synchronized crowd) for which 

)(2)( ∞=∞ abR .   In other words, the eventual steady state at long time lies on precisely 

the same diagonal line ( abR 2= ) as the unstable eigendirection governing the initial 

exponential growth.  Hence )(TR  and )(Ta  stay close to this diagonal line, and 

therefore remain in nearly constant ratio, at both the beginning and end of their time 

evolution.  In between, much the same is true: we find numerically that although 

)(2)( TabTR > , the two variables still hug the diagonal, hovering only slightly above it.   

So at all times, )(TR  and )(Ta  are in nearly constant ratio.  This explains why the right 

hand side of equation (39) stays nearly constant, and hence why the empirical law 

kVF ≈  holds in our model.    
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